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Abstract—Low latency live streaming (LLLS) like LL-DASH
has significantly reduced the end-to-end latency via chunked
transfer encoding (CTE). However, LLLS also comes with more
challenges for adaptive bitrate (ABR) algorithms: (1) bandwidth
measurement is non-trivial and inaccurate due to the possible
idle time between chunks in CTE; (2) the various uncertainty in
LLLS such as fluctuating segment size further lead to inaccurate
buffer estimation, severely degrading ABR’s performance. In
this paper, we propose AAR which comprises two modules: (1)
accurate bandwidth measurement via server-side Flag parameter
to identify the burst chunks within a segment, which allows for
more consecutive valid HTTP chunks; (2) an LLLS tailored ABR
with a novel robust objective that maximizes the minimum quality
of experience (QoE) brought by the uncertainty. To obtain the
minimum QoE, we propose a theorem based on the upper bound
of download time estimation, which is backed up by theoretical
guarantees. To derive the maximum QoE, we propose a new
LLLS state evolution mechanism and apply Model Predictive
Controller (MPC) to search for optimal bitrates. Extensive real-
world experiments demonstrate that AAR outperforms existing
baselines with 10%-80% measurement error reduction, and
QoE improves by 39%-104% throughout all considered network
conditions.

Index Terms—Live video streaming, Bandwidth measurement,
Adaptive streaming

I. INTRODUCTION

Video streaming has seen significant growth over the years,
it is reported by Cisco [1] that video traffic contributes more
than 70% of the global Internet traffic, where live video makes
up 17%. Therefore it motivates us to develop better adaptive
bitrate (ABR) algorithms to deliver users better quality of
experience (QoE). Different from traditional video-on-demand
(VOD) streaming, low latency live streaming (LLLS) [2]
presents more challenges because the video segment can be
delivered only after it’s been captured from the ingest side.
Therefore the total latency is at least the duration of a video
segment (about 4 seconds in VOD scenario), and it can
increase from rebuffering events which are more likely to
happen due to smaller buffer constraints to ensure low latency.

To address this issue, researchers propose to use MPEG
Common Media Application Format (CMAF) [3] coupled with
HTTP/1.1 chunked transfer encoding (CTE) [4], for exam-
ple, in LL-DASH [5]. The ingest side consistently produces
captured frames and uploads to the HTTP server in the unit
of CMAF chunks. When the client requests for the latest
segment, the server can directly deliver the cached smaller
CMAF chunks to the client via basic HTTP chunks, instead of

awaiting the full segment. In this way, the end-to-end latency
can be significantly reduced from about 10-30 seconds to 1-5
seconds.

However, such LLLS implementation grapples with two
critical issues: (1) inaccurate bandwidth measurement. On the
one hand, there may exist idle time between CMAF chunks
and by extension the corresponding HTTP chunks, therefore
the client’s perceived download time is longer than the actual
network transmission time. On the other hand, it’s difficult
to identify the exact sending time of each HTTP chunk
due to physical time gap. Henceforth we can only analyze
the arrival time pattern to deduce the bandwidth. Previous
work like [6], [7] cannot suffice to derive actual download
time, because they either neglect such idle time or impose
inappropriate filtering algorithms, rendering them inaccurate
and significantly degrading ABR’s performance; (2) various
uncertainty in LLLS. Apart from inaccurate bandwidth, the
exact next segment size is also unavailable for live streaming
on the client side, and the estimated size from prefixed bitrates
can deviate with up to 50% relative error. Moreover, the idle
time from CMAF chunks and player’s fetching logic further
add up the difficulty to accurately predict the download time
and buffer evolution, leading to inferior bitrate choices.

In this paper, we propose the AAR (Accurate and Robust)
framework designed for LLLS. Specifically, to address issue
(1), we first identify the root cause for poor measurement
as lacking CMAF chunk sending pattern within a segment.
Therefore, we propose to attach a Flag parameter within the
HTTP header from the server, indicating the number of burst
CMAF chunks and that the rest of the chunks may contain
idle time. In this way, we can accumulate the consecutive
valid HTTP chunks to obtain more accurate bandwidth via
size weighted average, which minimizes bandwidth deviation
from small CMAF chunks. Moreover, we also propose an
improved CMAF boundary identification patch in the latest
official dash.js to further guarantee accuracy. To cope with
issue (2), we propose a novel max-min objective for ABR
to guarantee the lower bound of QoE brought by the various
LLLS uncertainty. To derive the min solution, we propose a
theorem that by applying the upper bound of download time,
we can model the comprehensive uncertainty including idle
time, segment size, and future bandwidth, thus estimating the
worst LLLS-QoE. We also provide theoretical guarantees that
our objective falls back to regular maximum QoE when such
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Fig. 1: Idle time between CMAF chunks and HTTP chunks.

uncertainty is eliminated, thanks to our careful upper bound
estimation. To derive the max solution, we further propose a
new LLLS model such as the buffer and latency evolution,
with which we apply Model Predictive Controller (MPC) to
optimize our novel objective for optimal bitrates.

Finally, we conduct extensive experiments in real world,
comparing 7 bandwidth measurement baselines and 6 repre-
sentative ABRs with the latest dash.js throughout four network
trace datasets. The results demonstrate that AAR outperforms
existing methods with 10%-80% bandwidth error reduction
and 39%-104% QoE improvement. The ablation study also
validates the efficiency of each module of AAR.

Contributions. We summarize our contributions as follows:
• We carry out a comprehensive analysis from off-the-shelf

baselines to reveal the two critical issues in LLLS, i.e. the
inaccurate bandwidth measurement due to chunk idle time,
and inferior ABR performance due to various uncertainty.
• To tackle the two issues, we propose the AAR framework

comprising two modules. On the one hand, we propose to
leverage the burst CMAF chunk pattern to accumulate more
valid samples for accurate measurement, and we also propose
a robust size weighted averaging and an improved CMAF
boundary identification patch to gain better accuracy. On the
other hand, we propose a novel objective for ABR to maximize
the minimum QoE caused by the uncertainty. To address the
min optimization, we propose a practical theorem based on
the upper bound of download time, followed by theoretical
guarantees for our adaption when uncertainty diminishes. To
derive the max solution, we propose an improved LLLS
evolution model and apply MPC to obtain the optimal bitrates.
• Extensive real world experiments throughout 4 network

trace datasets demonstrate that AAR outperforms existing 7
measurement baselines and 6 representative ABRs.

II. BACKGROUND AND MOTIVATION

A. Bandwidth Measurement in LLLS

To meet the strict low latency requirement in LLLS, re-
searchers propose to combine CMAF and CTE, where the
segment duration is shorter and the transmission unit is the
smaller CMAF chunk instead of the whole segment, greatly

0 50 100
Segment

0

1000

2000

Ba
nd

wi
dt

h(
Kb

ps
)

BW-M
BW-P

BW-R
Bitrate

(a) I-moof

0 50 100
Segment

0

1000

2000

Ba
nd

wi
dt

h(
Kb

ps
)

BW-M
BW-P

BW-R
Bitrate

(b) Fleet

Fig. 2: Examples of existing bandwidth measurements’ impact
on fixed ABR’s performance.

reducing the total latency. However, it also brings challenges
for accurate bandwidth measurement. The perceived download
time is no longer accurate because there may exist idle time
between two CMAF chunks and by extension, the correspond-
ing HTTP chunks. We illustrate the reason in Fig. 1, assuming
the segment is composed of three CMAF chunks, each divided
into several small HTTP chunks, where No.4 and No.6 contain
parts of adjacent CAMF chunks. Case 1 represents the catch-
up phase where the requested segment is behind the ingest
side, therefore the whole segment is delivered without pause.
While in case 2, the third CMAF chunk arrives at the server
after some idle time, and the first two are sent out in 5
consecutive HTTP chunks, followed by the later 6-7 HTTP
chunks, where No.6 carries idle time and No.4 does not.
Therefore from the client side there’s no way to distinguish
which HTTP chunk is valid for bandwidth measurement.

Accordingly, researchers have proposed countermeasures to
eliminate such idle time to derive the actual bandwidth [6]–[9].
LoL+ [6] proposes to store the start and end time of a CMAF
chunk, i.e. the arrival time of the HTTP chunk that contains
moof and mdat boxes respectively. And then it computes
the average bandwidth of all CMAF chunks. However, as
indicated in Fig. 1 case 2, the last HTTP chunk No.6 still
carries idle time, which leads to overestimation of the end
time of CMAF chunk 2. Moreover, the first CMAF chunk of
a segment usually contains I frame and can make up 50%
size of the segment, thus averaging on all CMAF chunks can
introduce noises instead. To tackle the issue, Fleet [7] further
proposes to neglect the last HTTP chunk to prevent such idle
time, and it stores all the valid consecutive HTTP chunks to
average bandwidth. However, some valid HTTP chunks can
be filtered out like No.4 in Fig. 1, and the HTTP chunks are
usually about 1500 Bytes, whose download time can be easily
disturbed by random noises.

To verify our analysis, we conduct real world experiments
with rate-based ABR that picks the highest bitrate within
the available bandwidth, refer to Section IV-A for detailed
setup. The results are in Fig. 2, where BW-M, P and R
represent the measured, the predicted and the real bandwidth
respectively. We can find that I-moof (from LoL+ [6]) in (a)
exhibits relatively lower measurement due to the idle time in
the last HTTP chunk, and the burst deviation comes from the
small chunks disturbance. As a result, ABR constantly selects
the lowest bitrate (200Kbps) and wastes the bandwidth. In
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Fig. 3: RMPC’s buffer prediction error due to varying size and idle time. We directly use the bitrates and duration to estimate
the segment size.

contrast, Fleet in (b) almost always overestimates because
a single HTTP chunk’s download time can deviate several
milliseconds, causing totally different bandwidth result. There-
fore, ABR sometimes picks bitrate (1000Kbps) higher than the
available bandwidth (e.g. around segments 75 and 120), which
in turn incurs stalling and degrades the QoE.

Insight 1: We need to identify cached CMAF chunks from
the server to accumulate more consecutive HTTP chunks
without idle time, while also mitigating the noise deviation
from smaller chunks.

B. ABR in LLLS

Typical ABRs are designed for VOD scenario. For instance,
RobustMPC (RMPC) [10] estimates the bandwidth lower
bound and iterates all bitrates combination based on the
evolution model. LLLS ABRs are more sophisticated in terms
of low latency. Representative method LoL+ [6] leverages self-
organizing maps (SOM) to learn the bitrate adaption, along
with a new heuristic method to optimize the playback speed
and coordinate latency. However, despite different designs,
existing ABRs exhibit strong dependence on accurate variables
which present challenges for LLLS. Apart from the inaccurate
measured and predicted bandwidth, LLLS also comprises
noisy segment size and comprehensive idle time, such as round
trip time (RTT), server’s pending for CMAF chunks, player’s
pause before fetching (e.g. scheduling in dash.js), etc. Without
proper estimation for the varying size and idle time, ABRs
cannot establish accurate modeling and search for optimal
bitrates, even with accurate bandwidth alone.

To demonstrate our concern, we conduct experiments with
RMPC [10] and fixed bandwidth trace to reveal the uncertainty
impact. Fig. 3 (a) illustrates the relative error for estimated
segment size and final buffer evolution. With lower size esti-
mation, RMPC tends to underestimate the download time and
overestimate the next buffer, which is very likely followed by
a stalling event due to smaller buffer in LLLS. In detail, Fig. 3
(b) presents the size error PDF of a 10 minutes video encoded
at different bitrates (Kbps), which validates the significant gap
of even twice the size estimation. Moreover, the possible idle
time from both the server and client also contributes to the

inaccurate buffer. Fig. 3 (c) reveals the idle time percentage
of the segment download time, which almost appears random
due to comprehensive factors and severely falsifies the final
buffer prediction. More importantly, a small mismatch in
buffer prediction leads to obvious QoE degradation (refer to
Table V in ablation study), e.g. either wasting bandwidth or
causing stalling.

Insight 2: We need to model the comprehensive uncer-
tainty in LLLS and derive a robust objective for ABR to
guarantee the lower bound of QoE.

III. PROPOSED METHOD: AAR

A. Overview of AAR

We first summarize the frequently used notations in Table I.
To address the two issues in LLLS, i.e. inaccurate bandwidth
measurement and various LLLS uncertainty, we propose the
AAR framework and present the overview in Fig. 4. The
player first requests for segn, the HTTP server then bursts out
the cached CMAF chunks (ccn,j) via HTTP chunks (hcn,z).
AAR performs bandwidth measurement (Section III-B) with
Flag parameter upon receiving all the HTTP chunks, and then
delivers the predicted future bandwidth via typical smooth
average to the player. Meanwhile, AAR’s ABR (Section III-C)
receives current states from the player such as buffer and
latency. Based on the novel max-min objective, AAR derives
the min solution backed up by theoretical guarantees, and
then combines our novel LLLS modeling with MPC to obtain
optimal bitrates. Finally, the player requests for a new segment
and proceeds as above.

B. Flag-based Bandwidth Measurement

Burst Chunk Measurement. Based on insight 1, we tend to
identify the CMAF chunk sending pattern to accumulate con-
secutive HTTP chunks. However, this information is available
only on the server side, which records and decides how many
CMAF chunks are cached for burst. Therefore, we propose
to attach a Flag=ki parameter for segi in CTE’s header to
denote the burst number. In this way, we guarantee that the first
ki CMAF chunks are sent without pause, and by extension,



TABLE I: Summary of notations.

Category Notation Meaning Category Notation Meaning

Measurement

N number of segments

ABR

Ri bitrate for segi
K number of CMAF chunks in a segment αk weights for QoE, k ∈ [1, 5]
Zi number of HTTP chunks in segment i si/si,j size of segi/cci,j
segi segment i, i ∈ [1, N ] ui,j idle time before downloading cci,j
cci,j CMAF chunk j of segi, j ∈ [1,K] ci available bandwidth for segi
hci,z HTTP chunk z of segi, z ∈ [1, Zi] pci predicted bandwidth for segi
ti,z arrival time of hci,z of segi di/di,j estimated download time of segi/cci,j
hi,z size of hci,z of segi d∗i /d

∗
i,j actual download time of segi/cci,j

ki Flag for segi dui /d
u
i,j upper bound of download time deviation of segi/cci,j

bi,j buffer after downloading cci,j
T CMAF chunk duration cci,j

li/li,j latency after downloading segi/cci,j
ri/ri,j rebuffer time after downloading segi/cci,j
pi/pi,j playback rate after downloading segi/cci,j

CMAF
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Fig. 4: Overview of the AAR framework. BW-M and BW-P represent bandwidth measurement and prediction, respectively.

the HTTP chunks. In contrast, the later CMAF chunks may
contain idle time that requires separate filtering. To reduce
the noise deviation, we propose to leverage size weighted
average to guarantee the major bandwidth sample from the
ki accumulated CMAF chunks, which contain I frame that
makes up 50% of the segment size.

CMAF identification. Regarding the extraction of CMAF
chunks, we propose an improved algorithm over LoL+ intro-
duced in Section II-A, which checks the CMAF boundary only
once in an HTTP chunk. We tend to keep parsing the same
hci,z in loop in case a single HTTP chunk contains multiple
CMAF chunks (refer to Fig. 1). In addition, we identify and
fix some patches in offset setting during the moof +mdat
boxes search in the latest dash.js.

Implementation. We present the detailed procedure in
Algorithm 1. First of all, we directly compute the segment
bandwidth as done in VOD if ki is exactly K (line 1). The
next key step is to identify the CMAF boundary from hci,z
via our improved searching algorithm (line 3), the resulting T s

and T e store the start and end number of HTTP chunk for each
CMAF chunk, followed by our first and foremost bandwidth
sample that comprises all the hci,z for the burst ki cci,j (line
5). Note that we need to remove the last hc if it contains the
moof (starting) box of the next cc to filter idle time (line 4).
Finally, we compute the bandwidth of smaller CMAF chunks
(lines 6-8), followed by size weighted averaging (line 10) to
ensure the priority of our burst chunks’ bandwidth.

Algorithm 1: AAR’s bandwidth measurement
Input: Flag=ki, received all HTTP chunks hci,z , fetch

request time treq
Output: ci

1 if ki == K then return si−hi,1

ti,Zi
−ti,1

;
2 bw ← [];
3 T s, T e ← extract(hci,z); ▷ CMAF extraction
4 end← T s

ki+1 == T e
ki
? T e

ki
− 1 : T e

ki
; ▷ Burst chunks’

last HTTP chunk
5 bw.append([

∑end
z=2 hi,z

ti,end−ti,1
,
∑end

z=2 hi,z]); ▷ [bandwidth, size]
6 for j ← ki + 1 to K do
7 end← T s

j+1 == T e
j ? T e

j − 1 : T e
j ;

8 bw.append([
∑end

z=Ts
j
+1 hi,z

ti,end−ti,Ts
j

,
∑end

z=T s
j +1 hi,z]);

9 end
10 ci ←

∑
bw[:,0]×bw[:,1]∑

bw[:,1] ; ▷ Size weighted averaging
11 return ci

C. LLLS tailored ABR

Max-min Objective. Based on insight 2, we need to design
a robust objective to include all possible uncertainty in LLLS.
Following LoL+ [6] and QoE standard in [11]. The typical
objective is to decide the bitrates of N segments to ensure high
video quality Ri, low video rebuffering time ri, low latency li,



normal playback rate pi → 1 and low bitrate switches |Ri −
Ri−1|, formulated as follows in Equ. 1:

QoE =

N∑
i=1

(α1Ri−α2ri−α3li−α4|pi−1|)−
N∑
i=2

α5|Ri−Ri−1|

(1)
where αk > 0, k ∈ [1, 5] is the corresponding weight

for each metric. According to Section II-B and Fig. 3, the
uncertainty comes from idle time ui,j , varying segment size
si and inaccurate future bandwidth pci. The intuitive solution
is to maximize the worst QoE brought by the three uncertain
variables, formulated as follows:

max
Ri

min
{ui,j ,si,pci}

QoE (2)

Evolution Model. However, it remains unclear how they
impact the specific metrics in QoE, let alone the inner objective
solution. To derive a detailed QoE impact, we first propose a
new state evolution model tailored to LLLS to replace the
existing segment-based ones:

di,j = ui,j +
si,j
pci

(3)

bi,j = max(b−i,j − p−i,j × di,j , 0) + T (4)

ri,j = max(di,j −
b−i,j

p−i,j
, 0) (5)

li,j = l−i,j − (p−i,j − 1)×min(di,j ,
b−i,j

p−i,j
) + ri,j (6)

pi,j =


f(li,j) > 1, if li,j − ltarget > δ

1, if |li,j − ltarget| < δ

f(li,j) < 1, if li,j − ltarget < −δ
(7)

where δ is the prefixed threshold and xi,j , x ∈ {b, p, l} is
the attribute for the jth CMAF chunk of segi, x−

i,j = xi,j−1

if j > 1 and xi−1,K if not. In LLLS, ri =
∑K

j=1 ri,j ,
si =

∑K
j=1 si,j and li/pi is the final latency/speed after

downloading all the CMAF chunks. Specifically, the key
variable is the download time di,j which includes idle time
ui,j and the actual transmission time si,j

pci
, where si,j is the

estimated CMAF chunk size using prefixed bitrates. With di,j ,
we can predict the buffer bi,j change by draining p−i,j × di,j
seconds of cached video and appending a new CMAF chunk
duration T , along with possible stalling ri,j .

As for the latency evolution Equ. 6, it first catches up or
loses behind at speed p−i,j > 1 or p−i,j < 1. The magnitude is up
to the download time di,j if there is no rebuffering, otherwise

up to
b−i,j
p−
i,j

because there’s no more content to playback after
that. The rest of the increased latency solely depends on the
stalling time. In comparison, current work estimates in the
WRONG way that only considers the di,j such as Tightrope
[12] and Fleet’s ABR. [7]. Regarding the playback speed p−i,j ,
it depends on current latency deviation around the threshold

δ of target latency ltarget, f function maps latency to speed
according to a specific player.

Min Solution. With our novel LLLS model, we can trans-
form the objective 2 into the following:

max
Ri

min
di,j

QoE (8)

The reasons are twofold. On the one hand, we can observe
that the three variables ui,j , si and pci are only related to
the download time di,j , optimizing one variable decreases the
overall complexity. On the other hand, the min objective is
only related to di,j because rebuffering ri and latency li are
the only ones that include the uncertain download time, and
by extension the three variables in objective 2. Specifically,
we can divide the QoE into two parts according to the related
variables as follows:

max
Ri

N∑
i=1

min
di,j∈[0,du

i,j ]
[g1(Ri, pi) + g2(di,j)] =

max
Ri

N∑
i=1

g1(Ri, pi) + min
di,j∈[0,du

i,j ]
g2(di,j) (9)

where g1(Ri, pi) = α1Ri−α4|pi−1|−α5|Ri−Ri−1| and
g2(di,j) = −α2ri − α3li. The key to the min solution is to
identify the di,j that maximizes the rebuffering and latency.
Note that we Do Not tend to accurately predict the actual
download time like Fugu [13] in VOD because it requires
the exact next chunk size in the first place. The solution is
not intuitive since latency li,j is not always ∝ di,j while
rebuffering ri,j is. To this end, we propose Theorem 1.

Assumption 1: Assume that dui,j ≥ T , meaning that each
CMAF chunk exhibits at least T idle time waiting for the
captured frames on the ingest side.

Theorem 1: Let Assumption 1 hold, the min solution in
Equ. 9 is when and only when for each di,j = dui,j , i ∈
[1, N ], j ∈ [1,K].

Proof 1 (Theorem 1): First of all,

g2(di,j) = −α2

K∑
j=1

ri,j − α3li

= −α2

K∑
j=1

max(di,j −
b−i,j

p−i,j
, 0)− α3li

(10)

Therefore ri,j ∝ di,j . As for latency:

li,j =


l−i,j − (p−i,j − 1)× b−i,j

p−
i,j

, if di,j <
b−i,j

p−
i,j

l−i,j + di,j − b−i,j , if di,j ≥
b−i,j
p−
i,j

(11)

Therefore li,j ∝ di,j except when p−i,j > 1 and di,j <
b−i,j

p−
i,j

.

However, this is when l−i,j − ltarget > δ and to achieve the
term, li,j would first go through |l−i,j − ltarget| ≤ δ stage
where p−i,j = 1, therefore li,j = ri,j . This means there must
have been rebuffering events for the first time p−i,j > 1 and

b−i,j = T , then we have
b−i,j

p−
i,j

< b−i,j = T , and that li,j first



Algorithm 2: AAR’s LLLS tailored ABR
Input: estimated player idle time uclient, past CMAF

chunk size s∗i,j and idle time u∗
i,j , j ∈ [1,K],

future bandwidth pc, future horizon Nh, past
d∗j , j ∈ [i− 4, i]

Output: Ri+1

1 ∆d =
∑i

j=i−4 |d∗
j−dj |

5 ;
2 for each bitrate combination do
3 for k ← i+ 1 to i+Nh do
4 for j ← 1 to K do
5 uk,j ← u∗

i,j ;
6 if j == 1 then uk,j ← uk,j + uclient;
7 sk,j ←

Rk×K×T×s∗i,j
s∗i

;
8 dk,j ← uk,j +

sk,j

pc ;

9 duk,j ← dk,j +
|∆d|×dk,j

dk
;

10 Other variable evolution in Equ. 4-7;
11 end
12 end
13 Compute QoE as in Equ. 9 with Theorem 1;
14 end
15 Ri+1 ← argmax(QoE);
16 return Ri+1

decreases and then increases as di,j increases, di,j ∈ [0, dui,j ].
Based on Assumption 1, li,j(dui,j) ≥ li,j(T ) = l−i,j = li,j(0).
Therefore we can still set di,j = dui,j to get the maximum

latency li,j . Moreover, after this stage, ri,j = dui,j −
b−i,j

p−
i,j

> 0,
which means next time bi,j = T , and this process continues.

In summary, we can always set di,j = dui,j to derive the
maximum li, ri and the minimum g2(di,j). ■
dui,j Estimation. To realize the theorem in practice, we

collect the past actual segment download time d∗i from the
player feedback to compute the maximum estimated download
time deviation. Specifically, we propose to store historical
segment level d-error as ∆di = |d∗i − di|, then we distribute
such ∆di to each di,j by the ratio over di to obtain the upper
bound dui,j = di,j+

|∆di|×di,j

di
. Note that we do not store ∆di,j

because the actual d∗i,j is not available since the sending time
can be falsified by idle time in HTTP chunks.

To guarantee that Theorem 1 does not impact the maximum
QoE when the LLLS uncertainty is eliminated, we propose
Theorem 2 to justify our dui,j computation:

Theorem 2: With accurate ui,j , si,j and pci, objective 9 falls
back to regular objective maxRi

QoE.
Proof 2 (Theorem 2): The proof is intuitive, accurate

variables imply that ∆di = |d∗i − di| = 0, thus dui,j =

di,j +
|∆di|×di,j

di
= di,j . Therefore the min solution is plain.

In contrast, if we adopt ∆di = |d∗i − dui | = |di − dui | ≠ 0, we
will overestimate dui,j which is supposed to be di,j , therefore
the min solution is not maximized. ■

Implementation. Finally, to derive the max solution, we
apply MPC algorithm to combine our novel LLLS model to

TABLE II: Bandwidth (Kbps) distribution of datasets.

Datasets
Metrics Mean Std 25th 50th 75th

FCC 1526 1288 596 901 3426
Oboe 2966 1552 1765 2940 3957

3G/HSDPA 1933 1053 1130 1836 2472
Online 8594 5674 2789 8115 15359

iterate all possible bitrates combination. The specific procedure
is in Algorithm 2. We first derive the average d-error from
the past 5 segments (line 1). Then we perform regular MPC
search, where each uk,j is estimated by server’s chunk idle
time (line 5), and the first CMAF chunk also experiences
additional client’s fetching idle time and RTT (line 6). sk,j
is estimated by the last segment’s chunk size ratio, and the
total segment size sk is fixed as Rk ×K × T (line 7). Based
on Theorem 1, we leverage the upper bound duk,j to estimate
the minimum QoE. Finally, we can derive the maximum QoE
(line 13) for each iteration and search for the optimal bitrate
(line 15).

IV. EVALUATION

A. Evaluation Setup

We deploy an HTTP server and dash.js (v.4.7.2) client in
different Ubuntu server IPs. The video codec setting is from
the mmsys-grand-challenge [14]: The target latency ltarget and
buffer are 1.5 seconds with threshold δ = 0.3, and the duration
for each segment is 0.5 seconds, which contains K = 15
CMAF chunks and exactly 15 frames, meaning FPS=30 and
T = 33ms. We use the DASH reference video from [15]
encoded at 6 bitrates: Ri ∈{200, 600, 1000, 2500, 4000,
6000}Kbps. The Chrome-dev tool is used to simulate the
network bandwidth change as suggested in [14], while network
trace datasets include FCC [16], 3G/HSDPA [17], Oboe [18]
and a real-world dataset collected in live streaming of an online
e-commercial APP. The specific bandwidth distribution is in
Table II.

Bandwidth Measurement Baselines. We compare AAR
with 7 baselines, i.e. Fleet [7], DeeProphet [19], Moof parsing
[6] in LoL+, I-Moof that replaces the wrong moof + mdat
parsing in [6] with AAR’s improved patch (line 3 in Algorithm
1), AAST [20] that decides which chunks are downloaded at
network speed or at producer rate, Seg that directly uses the
total download time to evaluate bandwidth, Default in dash.js
that filters out HTTP chunks whose inter-arrival time is above
the average.

ABR Baselines. We select 6 representative baselines: LoL+
[6], L2ALL [21], STALLION [22], rate-based (RB) that picks
the highest bitrate within the available bandwidth, the default
ABR Dynamic in dash.js, and Pensieve [23] which is a rein-
forcement learning-based ABR originally designed for VOD
scenario, we retrain this model with our new live streaming
simulator using random samples from FCC and 3G/HSDPA
datasets and the QoE model in Equ. 1. Note that the RMPC
baseline is presented in ablation study, refer to Section IV-D
for setup.



TABLE III: Bandwidth measurement/prediction error (%) ↓ for different methods.

Category Dataset AAR Fleet I-moof Moof AAST Seg Default DeeProphet

Measurement

FCC 2.55±0.97 21.49±4.07 18.66±2.99 68.15±5.53 24.89±4.50 45.10±6.54 5679

11.8Oboe 3.59±0.48 13.78±2.06 21.00±5.17 69.55±5.97 27.31±4.66 61.08±7.84 1762
HSDPA 3.97±0.26 17.42±1.91 27.56±3.55 76.11±4.00 27.34±3.57 59.79±5.15 2336
Online 3.02±0.20 18.07±1.97 18.79±4.36 45.51±7.46 30.31±4.93 85.69±3.78 562

Prediction

FCC 5.42±1.36 21.52±3.29 18.31±3.10 66.74±6.19 27.04±3.97 45.09±6.36 5421

16.50Oboe 6.50±1.03 15.55±2.35 20.95±4.98 69.07±6.06 28.07±4.66 60.31±7.68 1608
HSDPA 15.06±1.46 24.15±2.31 30.84±3.87 79.60±4.07 31.19±4.02 60.47±5.06 2219
Online 14.58±2.97 26.38±4.09 26.09±6.15 51.82±9.19 37.20±7.38 84.61±3.41 541
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Fig. 5: ABR’s QoE comparison with fixed bandwidth measurement. We present the normalized QoE ↑, bitrates in Mbps ↑,
rebuffer in stalling ratio % ↓, latency in seconds → 1.5, relative playback speed → 1, and bitrate switches in Mbps ↓.

Algorithm Parameters. All the baselines including AAR
are parameter-free, the input parameters from Algorithm 1 and
2 are not prefixed and they depend on the specific streaming
content. While the weights in the QoE model are aligned with
previous work [6], [19].

Evaluation Metrics. (1) Absolute relative error |x−x∗|
x∗ ,

where x and x∗ is the estimated and ground truth value, x
denote bandwidth measurement and prediction, and also buffer
prediction in Section IV-D. (2) QoE model. We follow Equ. 1
and set the weights αi according to N-QoE [11] adopted by
prior work [6], [19]. Specifically, Rmin = 200, Rmax = 6000,
and α1 = 0.5, α2 = Rmax, α3 = 0.02×Rmin if li < 1.6 and
0.1×Rmax if not, α4 = Rmin, α5 = 1.

B. Bandwidth Measurement Results
Bandwidth Measurement. We first demonstrate AAR’s

accurate bandwidth measurement. For a fair comparison, we
fix the ABR as RB, and present the average measurement
errors in Table III. Note that we apply AAR’s improved CMAF
identification patch on all the baselines except Moof. We
directly report DeeProphet’s performance stated in [19].

We can find that AAR consistently outperforms all the base-
lines with 8%-80% improvement throughout all the datasets.
Specifically, compared to the second and previous SOTA
measurement DeeProphet, AAR still surpasses with 8%-9%
error reduction, let alone other methods. However, DeeProphet
requires extra setup on the server side, and the measurement
result ci is stored in server’s database, which can only be

delivered to the client upon segi+1 request. As a result, it
imposes a bitrate lower than the measured bandwidth from the
server side to prevent such delay, which has altered the whole
LLLS framework and is not practical to deploy. Surprisingly,
we find I-moof can reduce at most 50% error compared to the
original Moof, which validates the importance of our improved
moof + mdat identification. AAST and Seg are relatively
worse as they neglect the CMAF chunk level idle time. Default
is the worst due to aggressive HTTP chunk filtering strategy,
random noises would render some chunks to be removed for
false idle time.

Bandwidth Prediction. To further demonstrate the impor-
tance of measurement, we also present the prediction errors
using trivial smooth average in Table III. The performance
ranking among baselines is similar to that in measurement.
However, we find that AAR’s prediction accuracy drops for
3G/HSDPA and Online datasets because the original network
trace varies with complex pattern. It requires more sophisti-
cated prediction methods such as the learning-based in [19]
other than accurate measurement, which is beyond the scope
of our work. In general, AAR’s measurement outperforms all
baselines with extremely low error rate, which in turn benefits
the prediction performance.

C. ABR QoE Results
For a fair comparison, we fix the bandwidth measurement as

AAR. The aggregate statistics for QoE scores and individual
components are shown in Fig. 5. Note that we normalize the



TABLE IV: ABR’s QoE ↑ with different bandwidth measurements.

Dataset Mea
ABR AAR Pensieve LoL+ L2ALL STALLION Dynamic RB

FCC AAR 5.23±2.00 3.08±1.59 3.66±1.55 3.31±1.52 2.70±1.60 3.81±1.50 3.28±1.52
Fleet 5.20±2.01 1.00±2.06 3.42±1.69 1.37±2.20 2.51±1.73 3.97±1.51 1.63±2.08

Oboe AAR 1.40±0.25 1.01±0.15 1.18±0.21 1.16±0.21 1.10±0.21 1.17±0.20 1.16±0.21
Fleet 1.23±0.27 1.00±0.18 1.18±0.24 1.17±0.27 1.10±0.21 1.12±0.22 1.14±0.26

HSDPA AAR 1.84±0.41 1.52±0.33 1.54±0.38 1.53±0.38 1.17±0.46 1.59±0.33 1.57±0.38
Fleet 1.83±0.42 1.24±0.45 1.40±0.43 1.32±0.63 1.00±0.55 1.45±0.34 1.31±0.61

Online AAR 2.20±0.38 1.07±0.35 1.86±0.81 1.91±0.53 1.38±1.14 2.07±0.46 1.87±0.57
Fleet 2.22±0.39 1.00±0.66 1.94±0.75 1.49±0.96 1.72±0.59 2.04±0.45 1.71±0.76

metric value by the worst baseline. Overall, AAR outperforms
all the baselines with 39%-104% QoE improvement, which
mainly stems from high bitrates and low rebuffering simulta-
neously. In comparison, the SOTA baseline LoL+ is inferior
mainly in rebuffering, especially for 3G/HSDPA and Online
due to the varying bandwidth. Dynamic ranks second since it
tends to pick the lowest bitrate among all the ABR rules, which
favors the rebuffering and latency components. L2ALL and RB
achieve similar performance while STALLION sometimes ex-
hibits the worst result, which validates that simply improving
future bandwidth estimation incurs limited QoE improvement.
Pensieve performs the worst for Oboe and Online dataset due
to the unseen high bandwidth traces during training, therefore
the picked bitrate is too conservative to maximize QoE. This
may apply to other learning-based ABRs that depend on the
training sample distribution like BDQ [12]. In general, AAR
outperforms existing ABR baselines with higher QoE, bitrates
and lower rebuffing.

D. Ablation Study

To validate the effectiveness of each module of AAR, we
combine different ABRs with different bandwidth measure-
ments in Table IV. Note that we only pick the representative
Fleet measurement for comparison, because DeeProphet re-
quires extra setup and alters our LLLS framework, despite its
performance. For each dataset, we normalize the QoE with
the minimum value across 2 measurements and 7 ABRs. The
results demonstrate AAR’s measurement generally improves
ABR’s performance and vice versa. As for the Online dataset,
Fleet exhibits better performance than AAR when combined
with LoL+ and STALLION ABRs, because most of the traces
contain high bandwidth, and Fleet generally overestimates the
bandwidth (refer to Fig. 2 (b)) which results in ABRs selecting
higher bitrates. However, the highest bitrate is 6000Kbps
which does not even make up 50% of the Online dataset
(See Table II). Therefore high bitrates do not necessarily incur
stalling and QoE rather improves.

To demonstrate our novel max-min objective improves
overall QoE, we replace the min solution dui,j with regular
di,j , and we adopt RMPC’s bandwidth prediction error module
pc ← pc

1+|∆pc| , denoted as AAR-1 (RMPC). To demonstrate
the rationale for ∆di = |d∗i − di| that guarantees adaption,
we instead use ∆di = |d∗i − dui | to estimate the upper bound

TABLE V: QoE ↑ and B-Error ↓ ablation study of AAR’s
ABR.

Dataset Metric
ABR AAR AAR-1 (RMPC) AAR-2

FCC QoE 1.14±0.43 1.00±0.39 1.13±0.42
B-Error 6.67%±1.61% 7.37%±1.94% 7.27%±1.88%

Oboe QoE 1.12±0.20 1.00±0.24 1.11±0.21
B-Error 4.38%±0.33% 6.44%±0.72% 6.42%±0.68%

3G/HSDPA QoE 1.18±0.26 1.00±0.25 1.18±0.27
B-Error 5.39%±0.48% 7.66%±0.85% 7.58%±0.81%

Online QoE 1.04±0.17 1.00±0.16 1.01±0.14
B-Error 4.79%±1.00% 7.39%±1.56% 6.84%±1.21%

dui,j , denoted as AAR-2. For better comparison, we also use
the buffer prediction error |b−b∗|

b∗ to evaluate ABR’s modeling
performance. The QoE and B-Error results are in Table V. We
can find that AAR outperforms AAR-1 and AAR-2 with QoE
improvement of 3%-18% and B-Error reduction of 0.6%-2.6%.
AAR-1 ranks the bottom because our max-min objective is the
essential guarantee for robustness against all possible LLLS
uncertainty. AAR-2 still exhibits high B-Error because of the
inappropriate estimation of dui,j , as validated by Theorem 2.

To better perceive the difference, we present intuitive ex-
amples of buffer evolution and prediction errors in Fig. 6. We
can find in (a) that AAR’s predicted buffer is close to the
ground truth value, even when the segment size varies around
segment 40 in (d), thanks to our novel max-min objective
and the adjusted download time estimation. In contrast, AAR-
1 performs worse because RMPC only tackles bandwidth
uncertainty by design principles, therefore the size fluctuation
around segment 40 in (e) leads to inferior buffer prediction in
(b). AAR-2 adopts ∆di = |d∗i − dui | > 0 even with low size
deviation around segment 50 in (f), which renders varying
download time and buffer estimation. Therefore the latency
also fluctuates in (c) due to playback speed adjustment to
guarantee the buffer threshold (1.5s).

E. Overhead Analysis

Regarding bandwidth measurement, different from existing
methods like DeeProphet [19] and CLBE [24] that alter
streaming protocols or incur additional time delay, AAR Does
Not modify the client architecture and only slightly adjusts
the server side, which does not bring any additional time
overhead, because the Flag parameter is attached in the HTTP
chunk header, which is due for delivery in the first place.
In addition, the cached CMAF chunk number can be easily



0 50 100
Segment

0.5

1.0

1.5

2.0
Bu

ffe
r &

 L
at

en
cy

/s

Buffer-Real
Latency
Buffer-Predict

(a) AAR-Buffer Evolution

0 50 100
Segment

0.5

1.0

1.5

2.0

Bu
ffe

r &
 L

at
en

cy
/s

Buffer-Real
Latency
Buffer-Predict

(b) AAR-1 (RMPC) -Buffer Evolution

0 50 100
Segment

0.5

1.0

1.5

2.0

Bu
ffe

r &
 L

at
en

cy
/s

Buffer-Real
Latency
Buffer-Predict

(c) AAR-2-Buffer Evolution
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Fig. 6: Buffer evolution (a)-(c) and corresponding relative prediction error (d)-(f).

obtained from the server side. AAR’s ABR also induces no
additional overhead even with a max-min objective, because
we have derived a closed-form solution from Theorem 1 with-
out any optimization. In summary, AAR improves bandwidth
measurement accuracy and ABR QoE with near zero overhead,
demonstrating AAR’s feasibility in real world deployment.

V. RELATED WORK

Bandwidth Measurement. We have introduced two repre-
sentative measurement schemes in Section II-A. Alternatively,
there are also cross-layer measurements such as DeeProphet
[19] that leverages the TCP cwnd from server’s transport
layer to decide which of the packets are sent consecutively,
reducing TCP blocking time. However, this induces additional
setup overhead and the measured results can’t be delivered
to the clients before the segment request and ABR decision,
which greatly hinders real-world deployment. CLBE [24] also
proposes to use the captured packet information on the client
side to compute packet-level bandwidth. However, it requires
queries from third-party module via WebSocket, which can
induce additional time overhead, and a single packet’s band-
width still comprises deviation from noises like Fleet.

ABR Algorithm. The history of ABR starts with heuristic
methods like rate-based and RMPC [10], followed by deep
learning-based schemes like Pensieve [23] and Comyco [25].
Karma [26] improves QoE by learning the causality among
past observations, returns and actions. Jade [27] instead pro-
poses to optimize QoE by aligning with user’s scores via
RLHF [28]. SODA [29] proposes to optimize a time-based
QoE with theoretical guarantees, while MAFL [30] instead
evaluates the robustness of federated learning [31] based
ABRs. More recently, LLLS ABRs are proposed to optimize
latency and playback speed like LoL+ [6] in Section II-B.

L2ALL [21] instead solves an online convex optimization
problem to derive optimal bitrate. STALLION [22] improves
bandwidth measurement with the mean and deviation for better
decisions. Tightrope [12] proposes the BDQ framework that
leverages reinforcement learning to control both bitrates and
playback speed. However, it’s only implemented in offline
simulator and lacks compatibility with real world streaming.
SLVS [32] also proposes to generate a parameter table in a
simulator according to bandwidth distribution for hybrid ABR
to fine-tune parameters.

VI. CONCLUSION

In this work, we present two challenges in LLLS in terms
of inaccurate bandwidth measurement and various LLLS
uncertainty. Based on the insights, we propose the AAR
framework comprising two modules. On the one hand, we
propose to attach a Flag parameter to identify the burst
CMAF chunks to accumulate consecutive HTTP chunks for
smooth bandwidth. We also leverage size weighted average
and improve the CMAF boundary identification to further
guarantee accuracy. On the other hand, we propose a novel
max-min ABR objective to guarantee the lower bound of
QoE. We propose theorems to derive the min solution and
guarantee adaption. To address the max objective, we further
propose a novel LLLS model and apply MPC to search for
the optimal bitrate. Real world experiments demonstrate that
AAR outperforms 7 measurement and 6 ABR baselines with
significant improvement. The ablation study also validates the
effectiveness of each module of AAR.
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